首页> 外文OA文献 >Multi-scale modelling of shell failure for periodic quasi-brittle materials
【2h】

Multi-scale modelling of shell failure for periodic quasi-brittle materials

机译:周期性准脆性材料壳体破坏的多尺度建模

摘要

In a context of restoration of historical masonry structures, it is crucial to properly estimatethe residual strength and the potential structural failure modes in order to assess the safety ofbuildings. Due to its mesostructure and the quasi-brittle nature of its constituents, masonrypresents preferential damage orientations, strongly localised failure modes and damage-inducedanisotropy, which are complex to incorporate in structural computations. Furthermore, masonrystructures are generally subjected to complex loading processes including both in-plane and out-of-plane loads which considerably influence the potential failure mechanisms. As a consequence,both the membrane and the flexural behaviours of masonry walls have to be taken into accountfor a proper estimation of the structural stability.Macrosopic models used in structural computations are based on phenomenological lawsincluding a set of parameters which characterises the average behaviour of the material. Theseparameters need to be identified through experimental tests, which can become costly due tothe complexity of the behaviour particularly when cracks appear. The existing macroscopicmodels are consequently restricted to particular assumptions. Other models based on a detailedmesoscopic description are used to estimate the strength of masonry and its behaviour withfailure. This is motivated by the fact that the behaviour of each constituent is a priori easierto identify than the global structural response. These mesoscopic models can however rapidlybecome unaffordable in terms of computational cost for the case of large-scale three-dimensionalstructures.In order to keep the accuracy of the mesoscopic modelling with a more affordable computa-tional effort for large-scale structures, a multi-scale framework using computational homogeni-sation is developed to extract the macroscopic constitutive material response from computa-tions performed on a sample of the mesostructure, thereby allowing to bridge the gap betweenmacroscopic and mesoscopic representations. Coarse graining methodologies for the failure ofquasi-brittle heterogeneous materials have started to emerge for in-plane problems but remainlargely unexplored for shell descriptions. The purpose of this study is to propose a new periodichomogenisation-based multi-scale approach for quasi-brittle thin shell failure.For the numerical treatment of damage localisation at the structural scale, an embeddedstrong discontinuity approach is used to represent the collective behaviour of fine-scale cracksusing average cohesive zones including mixed cracking modes and presenting evolving orientationrelated to fine-scale damage evolutions.A first originality of this research work is the definition and analysis of a criterion basedon the homogenisation of a fine-scale modelling to detect localisation in a shell description anddetermine its evolving orientation. Secondly, an enhanced continuous-discontinuous scale tran-sition incorporating strong embedded discontinuities driven by the damaging mesostructure isproposed for the case of in-plane loaded structures. Finally, this continuous-discontinuous ho-mogenisation scheme is extended to a shell description in order to model the localised behaviourof out-of-plane loaded structures. These multi-scale approaches for failure are applied on typicalmasonry wall tests and verified against three-dimensional full fine-scale computations in whichall the bricks and the joints are discretised.
机译:在恢复历史砌体结构的背景下,至关重要的是正确估计残余强度和潜在的结构破坏模式,以评估建筑物的安全性。由于其细观结构及其成分的准脆性,砖石呈现出优先的破坏方向,强烈的局部破坏模式和破坏诱发的各向异性,这些因素很难纳入结构计算中。此外,砌体结构通常经受复杂的载荷过程,包括平面内和平面外载荷,这会极大地影响潜在的破坏机理。因此,必须适当考虑砌体墙的膜和挠曲特性,才能正确估计结构的稳定性。结构计算中使用的宏观模型基于现象学定律,其中包括一组表征特征的平均参数。材料。这些参数需要通过实验测试来确定,由于行为的复杂性(尤其是出现裂缝时),其成本可能很高。因此,现有的宏观模型仅限于特定的假设。基于详细的介观描述的其他模型可用于估计砌体的强度及其失败的行为。这是由于每个组成部分的行为都比全局结构响应更容易识别的先验事实。但是,对于大型三维结构,这些介观模型在计算成本方面很快就变得难以承受。为了保持介观建模的准确性,同时为大规模结构提供更合理的计算投入,开发了使用计算均质化的比例框架,以从对介观结构样本执行的计算中提取宏观本构材料响应,从而缩小宏观和介观表征之间的差距。准脆性异质材料失效的粗粒化方法已经开始出现在平面问题中,但对于壳的描述仍未得到充分探讨。这项研究的目的是为准脆性薄壳破坏提出一种新的基于周期均质化的多尺度方法。对于在结构尺度上的损伤局域的数值处理,采用嵌入的强不连续性方法来表示精细的集体行为。利用包括混合裂纹模式在内的平均内聚区的大尺度裂纹,并呈现与小尺度损伤演化相关的演化方向。这项研究工作的第一个独创性是定义和分析基于小尺度模型的均质化以检测局部缺陷的准则。外壳描述并确定其发展方向。其次,对于面内加载结构,提出了一种增强的连续-不连续尺度过渡,该过渡结合了由破坏性介观结构驱动的强嵌入不连续性。最后,这种连续-不连续的均质化方案被扩展到壳的描述,以便对平面外受力结构的局部行为进行建模。这些多尺度的破坏方法应用于典型的砌体墙测试,并针对三维全精细尺度计算进行了验证,其中所有砖块和接缝均离散化了。

著录项

  • 作者

    Mercatoris, Benoît;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号